

Dr. Grove Higgins & Master Trainer Pat Marques

Dr. Grove Higgins

- Chiropractor & Soft Tissue Practitioner
- Speaker and Educator
- Functional Anatomy Instructor
- NSCA CSCS
- Research:
 - Biomechanics Gait and Foot Development
 - Anatomy of Lower Leg Modeling
 - Exercise & Hormonal Response
- Worked in medicine since 1993

Patrick Marques

- o LTC (R) U.S. Army
- BS Exercise Science
- Z-Health Master Trainer & Instructor
- NSCA CPT
- Speaker and Educator
- Corrective Exercise Therapist
- \circ Research
 - Exercise & Hormonal Response, Sleep

Course Objectives:

- Understand why joints degenerate and may need replacement
- o Understand common joint replacement technology
- o Understand joint replacement rehabilitation prior to post-medical training
- $\circ~$ Understand the role of the fitness specialist in post-medical training
- $\circ~$ Learn basic neurology for movement, posture, balance, and pain
- $\circ~$ Learn baseline assessments for gait & motor control
- $\circ~$ Learn how to use sensory stimulus to promote better movement
- Learn specific exercises for joint replacement
- Understand programming for joint replacement
- Understand continuing education opportunities

- Module 1 General information regarding joint replacement
 - $\circ~$ How joints work
 - $\circ~$ Why joints need to be replaced
 - The joint replacement process
 - Physical therapy after joint replacement
 - The neurology of joint replacement motor dysfunction & pain
 - Joint replacement exercise programming overview

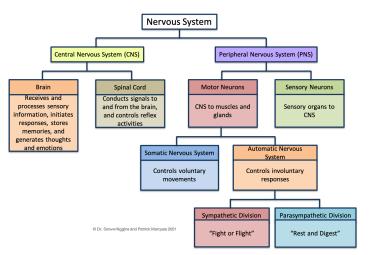
- Module 2 Knee
 - Anatomy & physiology
 - o Pathophysiology
 - Knee replacement surgery
 - Knee replacement rehabilitation
 - Assessing
 - o Training
 - Programming

- Module 3 Hip
 - Anatomy & physiology
 - o Pathophysiology
 - Hip replacement surgery
 - Hip replacement rehabilitation
 - Assessing
 - Training
 - Programming

- Module 4 Shoulder
 - Anatomy & physiology
 - o Pathophysiology
 - Shoulder replacement surgery
 - Shoulder replacement rehab
 - Assessing
 - Training
 - o Programming

• Module 5 – Business Development

- Marketing strategy
- $\circ~$ Communicating with medical teams



- Module 6 (Epilogue) Ongoing personal education
 - Recommended reading
 - Recommended courses
- Module 7 (Final Exam)
 - Quizzes after each Lesson will help you prepare
 Final Exam

- Why use a "neuro-centric" approach to training?
 - $\circ~$ The fastest system in the body
 - The nervous system is very orderly
 - Neuroanatomy has rules

The "Big Three" Concepts

Big Concept #1:

The nervous system is the *governing* system of the body

- It runs everything
- Pain, performance, rehab/therapy, fitness, etc. ALL depend on the nervous system

KEY POINT: Biomechanics *obey* and *respond* to the nervous system, not vice versa

Big Concept #2:

The brain's #1 job is survival

- So... any threat to the brain puts the brakes on your system
- Threat is not just physical injuries

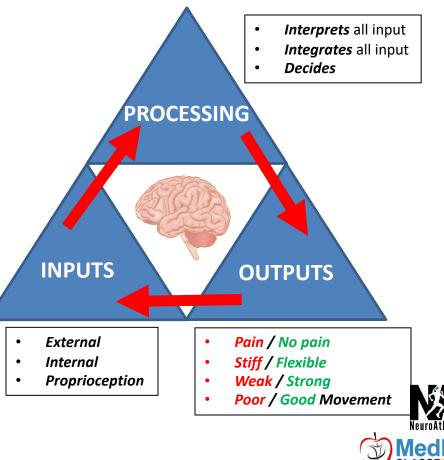
KEY POINT: Performance is a gift your brain gives you when it feels good about everything

/www.donsmaps.com/images6/humansabretooth.jpg

© Z-Health Performance Solutions. LLC

Poor movement Depression

- Anxiety
- Stiffness
 - Weakness, etc....

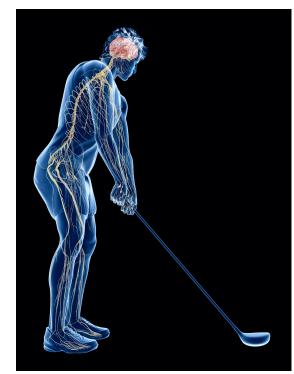


Big Concept #3:

The *input* to the brain determines the *output*

KEY POINT: To get a better output, you must:

- Change the input
- Improve the processing



© Dr. Grove Higgins and Patrick Marques 2021

The 3 Big Concepts:

- 1. The nervous system is the governing system of the body
- 2. The brain's #1 job is survival
- 3. The input to the brain determines the output

Biomechanics are still important!

